
Observing Resources in the Wild

Graziano Obertelli

The Mayhem Group
University of California, Santa Barbara

May 12, 2004



Observing Resources in the Wild

Grid Computing

I Vision: Applications programs plugs into a software
environment to draw computational power from a dynamically
changing pool of resources (Foster, Kesselman, et al, 1998).

I Electrical Power Grid analogy:
I Power generation facilities
I Household appliance
I Scale to national and international levels

I Federated System:
I Grid users (both power producers and applications consumers)

must be able to join and leave the Grid at will
I Local control supersedes global control



Observing Resources in the Wild

The Dark Side of Grid Computing

I Heterogeneity
I Machines, networks, software, administrative policies all vary
I and electrons are not created equals (CPU cycles, memory and

storage space, connectivity)

I Dynamism
I Loads, performance and availability change with time

I Programmability
I Complex and dynamically changing system

I Security

I Maintainability



Observing Resources in the Wild

Stormy Weather

I Problem: How can programs extract high performance levels
given the resource pool is heterogeneous and dynamically
changing?

I Applications and/or systems must be able to tolerate or mask
fluctuating performance of federated grid resources

I Idea: Predict future performance levels and adapt applications
to the predictions on the fly

I Predictions must be at the application level
I Predictions must be made on-line to avoid staleness
I Delivery of predictions must be fast

I A Solution: The Network Weather Service



Outline

The Network Weather Service

Lesson I: Services vs Tools

Lesson II: Don’t Believe Everything You Read

Lesson III: Predict or Waste

Lesson IV: Real Systems Can Be Predicted



Observing Resources in the Wild

Challenges in Monitoring the Grid

I The monitoring system has to be itself a Grid application.
I Problem: need to take measurements constantly

I No way to know when the user will make a query
I Models become stale very quickly
I Previous history improves accuracy of predictions

I Mort information systems are optimized for query and not
update (high frequency dynamics are common)

I The System needs to be:
I Non-Intrusive: need to control the perturbation on the

monitored resources
I Fast: needs to gather and forecast data from all resources all

the time
I Robust: if the scheduler can’t see the resource, it can’t use it



Observing Resources in the Wild

The Network Weather Service

I A distributed, robust and adaptive system that
I monitors the performance that is available from distributed

resources
I forecasts future performance levels using fast statistical

techniques
I delivers forecasts on-the-fly to applications and resource

allocators (Globus, Condor, Legion, NetSolve, NINF etc. . . )

I Portable and extensible

I Works at the application level and end-to-end
I Structure the system exploits the delay between data

generation and query:
I Sensors write into local, distributed repositories
I Proxy caches asynchronously pull the data close to the user
I User forecasting to filter the effects of inconsistent best effort

world view



Observing Resources in the Wild

Logical Architecture

Persistent
State

Forecasting

Reporting

Sensor
Control

machine
network

cpu
sensor

network
sensor

memory
sensor

Name
Service

cache

LDAP

cache

Globus

cache

GrADS

cache

XML

proxy caches



Observing Resources in the Wild

End-to-end Network Measurement

Host A.ucsb

Host E.ucsb

Host D.ucsb Host C.ucsb

Host B.ucsb

Host A.utk

Host E.utk

Host D.utk Host C.utk

Host B.utk

Host A.isi

Host E.isi

Host D.isi Host C.isi

Host B.isi

UCSB

UTK

ISI



Observing Resources in the Wild

The Network Weather Service

Lesson I: Services vs Tools

Lesson II: Don’t Believe Everything You Read

Lesson III: Predict or Waste

Lesson IV: Real Systems Can Be Predicted



Observing Resources in the Wild

Lesson I: Services vs Tools

I There are a lot of tools: iperf, netperf, pathload, nttcp, ping
I They are simpler (they monitor only one thing)
I They are better known (Iperf is the most accurate end-to-end

performance monitoring tool.)
I Not designed to gather data continuosly: timeout is ctrl-C
I Each user runs a separate instance:

I 23% of the traffic going across Abilene is measuring network
performance

I Network Weather Service:
I Allows to tailor the reports per application (cliques are user

defined)
I Measures multiple resources of the same node (ie CPU might

be useless without memory)
I Give fresh forecasts of future usage of resources
I Designed for unattended operations:

I adaptive timeouts
I handles network partitions



Observing Resources in the Wild

Best of Breeds

Comparison of Network Measurement Tools

0

1

2

3

4

5

6

netperf iperf nttcp nws_ping

Application

M
ea

su
re

m
en

t (
M

b/
s)



Observing Resources in the Wild

Lesson II: Seeing is Not Always Believing

I Measuring seems easy, but knowing what is being measured is
hard:

I Operating systems lie
I What does load average mean
I Can Linux really make time go backwards?

I Network measurements measure the network and not what it
delivers:

I Pathload, pchar, pathchar measure “capacity”

I Measuring is fun so everybody build a measurement tool: there
is much lore

I Measurement error?



Observing Resources in the Wild

What Does Unix Load Average Measure?

CPU Occupancy: Reported and Observed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time of Day

P
er

ce
n

ta
g

e 
O

cc
u

p
an

cy

Observed

Reported



Observing Resources in the Wild

Lesson III:One Size Does Not Fit All

I GridFTP can use parallel TCP sockets for data transfer
I Useful for clean networks with high bandwidth-delay products
I Several other tools have followed suit

I IBP streaming downloads:
I Segmented streaming media download protocol
I Fetches replicated segments in parallel
I Used a deadline-oriented progress metric to increase parallel

fetches of late segments
I “No Need for forecasting!”



Observing Resources in the Wild

Same Robustness Better Performance

General Progress-driven and NWS Adaptive Timeout Discovery
6 Replicas

0

10

20

30

40

50

60

70

80

90

100

1 20 39 58 77 96 115 134 153 172 191 210 229 248 267 286 305 324

Time (seconds)

F
ile

s 
A

rr
iv

ed
 (

p
er

ce
n

t)

IBP Streaming
Download
NWS Adaptive Timeout



Observing Resources in the Wild

Lesson IV: Real Systems Can Be Predicted

I Can we predict machine availability with quantifiable error?
I UCSB Instructional Computing Labs (6 months)

I Approximately 85 machines running Red Hat Linux locate in
three separate buildings

I Open to all Computer Science graduate and undergraduate
(approximately 800 users)

I Power switch is not protected: Students routinely clean off
competing users or intrusive processes to gain better
performance response

I Condor Pool at University of Wisconsin (6 months)
I Idle cycle harvesting system
I Machine owners specify what idle and busy mean
I Approximately 2000 machines

I Darrell Long Internet Study (3 months, 1995)
I pings rstat daemon
I Approximately 1200 hosts



Observing Resources in the Wild

Predictions and Confidence

I For Scheduling, predict the quantile for each machine: For at
least how long will a given machine be available with
95% confidence?

I Requires two estimates:
I Estimate the 0.05 quantile, call it Q0.05 P(x >= Q0.05) = .95
I Estimate the 95% confidence interval on Q0.05

I At least 95 times out of 100 the availability should be bigger
than lower confidence bound of Q0.05



Observing Resources in the Wild

An Example: UCSB

MLE Fit Bounds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000

Uptime (sec)

P
e
rc

e
n

t

MLE Lower MLE MLE Upper



Observing Resources in the Wild

Accurate Predictions and Confidence Values

Data Set Weibull Method Resample Method Binomial Method

CSIL 56.25% 62.5% 87.5%

Condor 95.92% 60.2% 98.9%

Long 57.95% 53.4% 94.3%

I First 20 measurements of each trace use to predict remaining
data values

I Picked random future values and recorded the number of time
each is successful

I Total correct hit rate for Binomial method is 96.5%



Observing Resources in the Wild

Lessons From the Wild

I A Service and not a Tool:
I if long-running, robust measurements are needed, simple

end-to-end tools are the wrong solution

I Measurements looks easy but understanding measurement is
hard:

I systems should consider measurement error
I measurements should be taken at the application level

I Don’t believe the lore:
I be adaptable to recognize the different condition and react

accordingly

I Good predictions are possible
I key is to be able to quantify error and confidence



Observing Resources in the Wild

Thanks

I Miron Livny and the Condor group at the University of
Wisconsin

I Darrell Long (UCSC) and James Plank (UTK)

I UCSB Facilities Staff

I NSF and DOE

I mayhem group (mayhem@pompone.cs.ucsb.edu):

Rich Wolski
John Brevik Martin Quinson
Matthew Allen Dan Nurmi
Todd Bryan Wahid Chrabakh
Graziano Obertelli Larry Miller
Ye Wen Andrew Mutz
Lamia Youseff Fred Tu

I graziano@cs.ucsb.edu

I http://nws.cs.ucsb.edu



Observing Resources in the Wild

Appendix
Time To Port Matters
Knowing What To Measure And Defaults vs Documentation



Observing Resources in the Wild

Needs to Run EveryWare

I EveryWare at SC98: The first program to use all of the extant
Grid infrastructure at the same time.

I The first program to couple the Tera and the NT Supercluster
with a web browser in a coffee shop.

I The first true Computational Grid program in the visionary
sense of the words:

I cycles are commodities
I dynamically adaptive and robust
I completely non dedicated-access

I Portable and easily extensible framework into which
applications can be plugged in



Observing Resources in the Wild

The New Resource (Tera MTA) is the Fastest

Here, There, and
EveryWare

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

m
ta

-te
ra

-h
.sd

sc
.e

du

ce
da

r.c
s.w

isc
.e

du

sa
lsa

.cs
.w

isc
.e

du
??

??

ce
nt

ur
ion

00
0.

cs
.V

irg
ini

a.
EDU

ca
sp

ian
.ci

s.k
su

.e
du

nt
sc

10
14

.n
cs

a.
uiu

c.e
du

cs
ag

-2
26

-2
34

.u
cs

d.
ed

u

go
lde

n.
sd

sc
.e

du

u6
0.

CS.B
er

ke
ley

.E
DU

br
ow

se
r3

.u
cs

d.
ed

u

Unix

NT

Condor

Globus

Legion

Java

NTSC

CSAG

T3E
NOW

Espresso
Roma

Edges Per
Second



Observing Resources in the Wild

The Nice Guy

I Original NWS default experiment size was 64K bytes (ISDN
and 10Mb Ethernet were still in wide use when NWS 1.0 was
coded) but the experiment size (and the buffer size and the
single message size) is user configurable

I Notable colleagues published a paper containing the following
quote: Although tools such as the Network Weather Service
(NWS) measure and predict network bandwidth, a substantial
difference in performance can arise between a small NWS
probe (lightweight with 64KB size) and an actual file transfer
using GridFTP (with tuned TCP buffers and parallelism).

I Several groups have contacted us complaining about the
inability to use large probes



Observing Resources in the Wild

Small Probes Carry Lots of Information

Mean Normalized Prediction Error for
16MB HTTP 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4 5 10 15 30 60 180 300 450

Time (minutes between HTTP xfers)

M
N
EP

NWS Forecaster

NWS CDF Forecaster


	Introduction
	Outline
	The Network Weather Service
	Lesson I: Services vs Tools
	Lesson II: Don't Believe Everything You Read
	Lesson III: Predict or Waste
	Lesson IV: Real Systems Can Be Predicted
	Conclusions
	Appendix
	Time To Port Matters
	Knowing What To Measure And Defaults vs Documentation


